Monatshefte für Chemie Chemical Monthly © Springer-Verlag 1994 Printed in Austria

Crystal structure of LiFe³⁺(SeO₃)₂

G. Giester

Institut für Mineralogie und Kristallographie, Universität Wien, A-1010 Wien, Austria

Summary. Single crystals of $\text{LiFe}^{3+}(\text{SeO}_3)_2$ were prepared by hydrothermal synthesis. The crystal structure of $\text{LiFe}^{3+}(\text{SeO}_3)_2$ is reported: tetragonal, space group I42d, a = 10.649(2) Å, c = 9.959(2) Å, V = 1129.4 Å³, Z = 8, 1268 unique reflections, R = 0.037. The structure contains LiFeO₈ groups, built up by FeO₆ octahedra edgesharing with strongly distorted LiO₄ tetrahedra. These LiFeO₈ groups share corners with trigonal pyramidal SeO₃ groups to form a three dimensional network. The mean bondlengths are 1.994 Å, 2.006 Å and 1.699 Å for Li–O, Fe–O and Se(IV)–O, respectively.

Keywords. LiFe³⁺(SeO₃)₂; Crystal structure; Crystal chemistry; Hydrothermal synthesis.

Die Kristallstruktur von LiFe³⁺(SeO₃)₂

Zusammenfassung. Einkristalle von LiFe³⁺ (SeO₃)₂ wurden auf hydrothermalem Weg dargestellt und ihre Kristallstruktur bestimmt: tetragonal, Raumgruppe I $\overline{4}2d$, a = 10.649(2) Å, c = 9.959(2) Å, V =1129.4 Å³, Z = 8, 1268 unabhängige Reflexe, R = 0.037. Kennzeichnend für die Atomanordnung sind LiFeO₈ Gruppen, die aus FeO₆ Oktaedern und mit ihnen kantenverknüpften, stark verzerrten LiO₄ Tetraedern aufgebaut sind. Diese LiFeO₈ Baueinheiten bilden, mit 'trigonal pyramidalen SeO₃ Gruppen über Ecken verbunden, ein dreidimensionales Nétzwerk. Die Mittelwerte der Li–O, Fe–O and Se(IV)–O Abstände sind 1.994 Å, 2.006 Å und 1.699 Å.

Introduction

In the last few years a series of oxosalts containing ferric iron and selenium were isolated and their crystal structures determined: $FeH(SeO_3)_2$ [1], $Fe_2(SeO_3)_3 \cdot 6H_2O$ [2], $Fe(HSeO_3)_3$ and $Fe(HSeO_3)(Se_2O_5)$ [3], $Fe_2(SeO_4)_3$ [4], $Fe(SeO_2OH)(SeO_4) \cdot H_2O$ [5], $Fe_2(SeO_3)_3 \cdot H_2O$ [6], $NaFe(SeO_4)_2$ [7], $KFe(SeO_3)_2$ [8], $LiFe(Se_2O_5)_2$ [9], $RbFe(SeO_4)_2$ [10] and $Fe_2(SeO_3)_3 \cdot 3H_2O$ [11].

The present paper describes $LiFe^{3+}(SeO_3)_2$, a new representative of this class of compounds.

Experimental

LiFe³⁺(SeO₃)₂ was prepared by dissolving Li₂CO₃, SeO₂ and FeC₂O₄·2H₂O in H₂O. The mixture was filled in Teflon-lined steel autoclaves of 50 cm³ capacity with filling rates of about 20% and was heated up to 490(5) K. After a period of one month the vessels were cooled to room temperature within 12 hours. As a result of this hydrothermal treatment, yellow crystals of LiFe³⁺(SeO₃)₂ and green crystals of LiFe³⁺(SeO₃)₂ has formed within the mother liquid. These up to now unknown

a[Å]	10.649(2)
c[Å]	9.959(2)
V[Å ³]	1129.4
space group	I42d
formula units per cell	8
$\rho_{\rm calc} [\rm g \rm cm^{-3}]$	3.725
$\mu(MoK\alpha)[cm^{-1}]$	165.2
transmission factors	0.14-0.24
Equipment: Stoe four-circle diffractome	ter AED2; graphite monochromatized
MoK α – radiation; program Multan refinement with Shelx76 [13].	87 [12] for direct methods, structure
Data collection: $2\theta - \omega$ scans; 40 steps/r	eflection, increased for $\alpha_1 - \alpha_2$ splitting;
0.03° and 0.5-2.0 s/step; 2*4 steps for	· background measurement; 3 standard
reflections each 120 min; $2\theta_{max} = 70^\circ$; 29	95 K
lattice parameter refinement	64 reflections $(30^\circ < 2\theta < 33^\circ)$
extinction coefficient $g * 10^4$	6.0(3)
measured reflections $(+h + -k + -l)$	5449
h, k, l_{max}	17 17 16
unique data set	1268
data with $F_0 > 3\sigma(F_0)$	1060
number of variables	48
R	0.037
$R_w (w = 0.589 / [\sigma(F_0)]^2)$	0.034

Table 1. Summary of crystal data, X-ray measurements and structure refinements for $\text{LiFe}(\text{SeO}_3)_2$

Table 2. Structural parameters of LiFe(SeO₃)₂ with e.s.d.'s in parentheses. U_{ij} are given in pm². The anisotropic displacement factor is defined as exp $[-2\pi^2 \Sigma_i \Sigma_j U_{ij} h_i h_j a_i^* a_i^*]$

Atom	x/a	y/b	z/c	<i>U</i> ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U_{12}
Li	.5630(16)	.25	.125	165(69)	451(112)	231(83)	-48(29)	0	0
Fe	.2889(1)	.25	.125	126(5)	134(5)	97(4)	1(1)	0	0
Se	.44610(6)	.27469(5)	.40998(6)	138(2)	152(2)	107(2)	-2(1)	-1(1)	1(1)
01	.5816(4)	.2090(4)	.4593(4)	115(18)	269(24)	157(18)	5(7)	6(6)	15(7)
O2	.3410(4)	.1837(4)	4959(4)	162(19)	176(20)	129(19)	-7(7)	15(6)	-9(7)
O3	.4288(4)	.2080(4)	.2547(4)	147(19)	238(23)	119(17)	-7(6)	-8(6)	16(7)

compounds were identified by single crystal X-ray diffraction methods – the crystal structure of $LiFe^{3+}(Se_2O_5)_2$ has already been published.

Single crystal data of LiFe³⁺(SeO₃)₂ were collected on a Stoe AED2 four-circle diffractometer; important crystal parameters and refinement procedures are given in Table 1. Intensities were corrected for Lorentz and polarization effects as well as for absorption (ψ -scans). The crystal structure of LiFe³⁺(SeO₃)₂ was solved in the acentric space group I42d by direct methods (Multan 87). The structure parameters were refined by full-matrix least-squares techniques, the results are listed in Table 2. Complex scattering factors were taken from the International Tables for X-ray Crystallography. A refinement with the enantiomorph atomic positions led to considerable increase of the *R*-value (*R* = 0.053 instead of *R* = 0.037).

In the difference Fourier synthesis the residual electron densities were $< 2.8 \text{ e}\text{\AA}^{-3}$.

Results and Discussion

The atomic arrangement in $\text{LiFe}^{3+}(\text{SeO}_3)_2$ seems to be conveniently described as a framework structure (Fig. 1): The FeO₆ octahedron shares a common edge with the LiO_4 polyhedron forming a LiFeO_8 unit. Each oxygen atom of this group additionally belongs to a selenite pyramid, thus cornerconnecting the LiFeO_8 unit via 8 SeO₃ groups to a threedimensional network.

The geometry of the polyhedra complies with common experience [15–17], selected interatomic bond distances and bond angles are given in Table 3. The short intrapolyhedral O3–O3 distances of the extremely distorted LiO_4 "tetrahedron" forms the common edge with the FeO₆ octahedron and the involved bond angles O3-central atom-O3 are the smallest within both polyhedra. While O2 and O3 are each bound to one Fe, Li and Se atom, O1 only belongs to one Fe and Se atom, respectively. Therefore, the corresponding bond lengths Fe–O1 and Se–O1 are the shortest one's in both cases.

The crystal structure of the coprecipitate, $\text{LiFe}^{3+}(\text{Se}_2O_5)_2$, resembles that of the $Me^{2+}\text{Se}_2O_5$ (Me = Mn, Co, Zn) compounds. The Li atom is six-coordinated and the FeO₆ and LiO₆ octahedra form chains of edge sharing, alternately

			[Å]				[Å]
Li–O2	2x		2.010(11)	Fe-O1	2x		1.981(5)
Li–O3	2x		1.978(13)	Fe-O2	2x		2.016(4)
<li-o></li-o>			<1.994>	Fe–O3	2x		2.022(4)
			- ? -	$\langle Fe-O \rangle$			$\langle 2.006 \rangle$
		Ľ	[A]			Г°Л	Å٦
O2-Li-O2	1 x	100.5(7)	[3.091(6)]			L J	
O3-Li-O3	1 x	87.5(7)	[2.735(6)]	O1-Fe-O2	2x	87.8(2)	[2.770(6)]
O2-Li-O3	2x	138.1(2)	[3.725(6)]	O1-Fe-O2	2x	93.1(2)	[2.902(6)]
O2-Li-O3	2x	100.4(2)	[3.064(6)]	O1-Fe-O3	2x	85.5(2)	[2.717(6)]
			<3.154>	O1-Fe-O3	2x	93.6(2)	[2.917(6)]
			·····	O2-Fe-O3	2x	91.2(2)	[2.885(6)]
	[Å]			O2–Fe–O2	1 x	93.4(2)	[2.934(6)]
				O3-Fe-O3	1 x	85.1(2)	[2.735(6)]
Se-O1	1 x		1.677(4)				$\langle 2.838 \rangle$
Se-O2	1 x		1.710(4)				
Se-O3	1 x		1.711(4)				
$\langle Se-O \rangle$			<1.699>				
	[°]		[Å]				
O1–Se–O2		100.4(2)	[2.601(6)]				
O1-Se-O3		100.6(2)	[2.607(6)]				
O2-Se-O3		98.4(2)	[2.590(5)]				
$\langle \text{O-Se-O} \rangle$		<99.8>	<2.599>				

Table 3. Interatomic bond lengths [Å], bond angles [°] (with e.s.d.'s in parentheses) and intrapolyhedral O–O distances (given in brackets) in LiFe(SeO₃)₂

Fig. 1. Crystal structure of $\text{LiFe}^{3+}(\text{SeO}_3)_2$ in a projection parallel to [001]. The figure was drawn with the program ATOMS [14]. The selenium atoms of the selenite groups are indicated as circles

arranged polyhedra. Thus, no close relationships with the atomic arrangement in $LiFe^{3+}(SeO_3)_2$ are evident.

In KFe³⁺(SeO₃)₂ [8], (space group Pnma), the monovalent cation is eightcoordinated, all polyhedra arranged on the mirror plane, realizing a distinctly different structure type. The FeO₆ octahedra are isolated from each other, cornerconnecting with SeO₃ pyramids and sharing common edges with the KO₈ polyhedra.

References

- [1] Valkonen J., Koskenlinna M. (1978) Acta Chem. Scand. A32: 603
- [2] Hawthorne F. C. (1984) Canad. Min. 22: 475
- [3] Muilu H., Valkonen J. (1987) Acta Chem. Scand. A41: 183
- [4] Giester G., Wildner M. (1991) Mh. Chem. 122: 617
- [5] Giester G. (1992) Mh. Chem. 123: 957
- [6] Giester G. (1993) J. Sol. St. Chem. 103: 451
- [7] Giester G. (1993) Min. Pet. 48: 227
- [8] Giester G. (1993) Z. Krist. 207: 1
- [9] Giester G. (1993) Mh. Chem. 124: 1107
- [10] Giester G. (1994) Mh. Chem. (in press)
- [11] Giester G., Pertlik F. (1994) J. Alloys Compounds (in press)
- [12] Debaerdemaeker T., Germain G., Main P., Tate C., Woolfson M. M. (1987) MULTAN87. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data, Univs. of Ulm, Germany, Louvain, Belgium, and York, England
- [13] Sheldrick G. M. (1976) SHELX-76 program for crystal structure determination. Cambridge, England
- [14] Dowty E. (1993) ATOMS 2.3 a Computer Program for Displaying Atomic Structures. Kingsport, TN
- [15] Baur W. H. (1991) Interatomic Distance Predictions for Computer Simulation of Crystal Structures. In: O'Keeffe M., Navrotsky A. (eds.) Structure and Bonding in Crystals, Vol. II, 31. Academic Press, New York
- [16] Cocco G., Fanfani L., Zanazzi P. F. (1972) Lithium (3-A). In: Wedepohl K. H. (ed.) Handbook of Geochemistry II-1. Springer, Berlin Heidelberg New York
- [17] Hawthorne F. C., Groat L. A., Ercit T. S. (1987) Acta Crystallogr. Sect. C43: 2043

Received July 23, 1993. Accepted August 26, 1993